Sample \& Buy

Tools \& Software

PCA9306 Dual Bidirectional 1^{2} C Bus and SMBus Voltage-Level Translator

1 Features

- 2-Bit Bidirectional Translator for SDA and SCL Lines in Mixed-Mode ${ }^{2} \mathrm{C}$ Applications
- $I^{2} \mathrm{C}$ and SMBus Compatible
- Less Than 1.5-ns Maximum Propagation Delay to Accommodate Standard-Mode and Fast-Mode I ${ }^{2} \mathrm{C}$ Devices and Multiple Masters
- Allows Voltage-Level Translation Between
- $1.2-\mathrm{V} \mathrm{V}_{\text {REF } 1}$ and $1.8-\mathrm{V}, 2.5-\mathrm{V}, 3.3-\mathrm{V}$, or $5-\mathrm{V} \mathrm{V}_{\text {REF2 }}$
- 1.8-V $\mathrm{V}_{\text {REF } 1}$ and $2.5-\mathrm{V}, 3.3-\mathrm{V}$, or $5-\mathrm{V} \mathrm{V}_{\text {REF } 2}$
- 2.5-V $\mathrm{V}_{\text {REF } 1}$ and $3.3-\mathrm{V}$ or $5-\mathrm{V}_{\mathrm{REF} 2}$
- 3.3-V $V_{\text {REF } 1}$ and $5-V V_{\text {REF2 }}$
- Provides Bidirectional Voltage Translation With No Direction Pin
- Low 3.5- Ω ON-State Resistance Between Input and Output Ports Provides Less Signal Distortion
- Open-Drain I ${ }^{2} \mathrm{C}$ I/O Ports (SCL1, SDA1, SCL2, and SDA2)
- 5-V Tolerant $\mathrm{I}^{2} \mathrm{C}$ I/O Ports to Support Mixed-Mode Signal Operation
- High-Impedance SCL1, SDA1, SCL2, and SDA2 Pins for EN = Low
- Lockup-Free Operation for Isolation When EN = Low
- Flow-Through Pinout for Ease of Printed-CircuitBoard Trace Routing
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
- 2000-V Human-Body Model (A114-A)
- 1000-V Charged-Device Model (C101)

2 Applications

- $I^{2} \mathrm{C}$, SMBus, PMBus, MDIO, UART, Low-Speed SDIO, GPIO, and Other Two-Signal Interfaces
- Servers
- Routers (Telecom Switching Equipment)
- Personal Computers
- Industrial Automation

3 Description

The PCA9306 device is a dual bidirectional $I^{2} \mathrm{C}$ and SMBus voltage-level translator with an enable (EN) input, and is operational from $1.2-\mathrm{V}$ to $3.3-\mathrm{V} \mathrm{V}_{\text {REF }}$ and $1.8-\mathrm{V}$ to $5.5-\mathrm{V}^{\mathrm{R}}$ RE2.
The PCA9306 device allows bidirectional voltage translations between 1.2 V and 5 V , without the use of a direction pin. The low ON-state resistance (R_{ON}) of the switch allows connections to be made with minimal propagation delay. When EN is high, the translator switch is ON, and the SCL1 and SDA1 I/O are connected to the SCL2 and SDA2 I/O, respectively, allowing bidirectional data flow between ports. When EN is low, the translator switch is off, and a high-impedance state exists between ports.

In addition to voltage translation, the PCA9306 device can be used to isolate a $400-\mathrm{kHz}$ bus from a $100-\mathrm{kHz}$ busby controlling the EN pin, and disconnecting the slower bus during fast-mode communication.

Device Information ${ }^{(1)}$

PART NUMBER	PACKAGE	BODY SIZE (NOM)
PCA9306	SSOP (8)	$2.95 \mathrm{~mm} \times 2.80 \mathrm{~mm}$
	VSSOP (8)	$2.30 \mathrm{~mm} \times 2.00 \mathrm{~mm}$
	X2SON (8)	$1.40 \mathrm{~mm} \times 1.00 \mathrm{~mm}$
	DSBGA (8)	$1.98 \mathrm{~mm} \times 0.98 \mathrm{~mm}$

(1) For all available packages, see the orderable addendum at the end of the datasheet.

Simplified Application Diagram

Table of Contents

1 Features 1
2 Applications 1
3 Description 1
4 Revision History. 2
5 Pin Configuration and Functions 3
6 Specifications 4
6.1 Absolute Maximum Ratings 4
6.2 ESD Ratings 4
6.3 Recommended Operating Conditions 4
6.4 Thermal Information 4
6.5 Electrical Characteristics 5
6.6 Switching Characteristics AC Performance (Translating Down) (EN = 3.3 V) 5
6.7 Switching Characteristics AC Performance (Translating Down) (EN = 2.5 V) 5
6.8 Switching Characteristics AC Performance (Translating Up) (EN = 3.3 V) 5
6.9 Switching Characteristics AC Performance (Translating Up) (EN = 2.5 V) 6
6.10 Typical Characteristics 6
7 Parameter Measurement Information 7
8 Detailed Description 8
8.1 Overview 8
8.2 Functional Block Diagram 8
8.3 Feature Description 8
8.4 Device Functional Modes 9
9 Application and Implementation 10
9.1 Application Information 10
9.2 Typical Application 10
10 Power Supply Requirements 14
11 Layout. 14
11.1 Layout Guidelines 14
11.2 Layout Example 14
12 Device and Documentation Support 15
12.1 Trademarks 15
12.2 Electrostatic Discharge Caution. 15
12.3 Glossary 15
13 Mechanical, Packaging, and Orderable Information 15

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
Changes from Revision K (October 2014) to Revision L Page

- Changed "ON-State Connection " to "ON-State Resistance" 1
- Deleted machine model ESD rating 1
- Added "bus" following "100-kHz" in the last sentence of the Description section. 1
- Changed body-size dimensions in the Device Information table 1
- Replaced pinout diagrams 3
- Added I/O column to the Pin Functions table 3
- Deleted RVH package from Pin Configuration and Functions section 3
- Moved $\mathrm{T}_{\text {stg }}$ from Handling Ratings to Absolute Maximum Ratings. 4
- Changed Handling Ratings to ESD Ratings 4
- Added a note following the Electrical Characteristics table. 5
- Added Figure 4 to the Parameter Measurement Information section 7
- Changed Figure 5 7
- Changed "repeater" to "level shifter" in second paragraph of the Overview section 8
- Changed the Design Requirements table 11
- Deleted the bottommost row of the Design Requirements table 11
- Corrected equation from $f_{k n e e}=0.5 / R T(10 \%-80 \%)$ to $f_{\text {knee }}=0.5 / R T(10 \%-90 \%)$ 12
Changes from Revision J (October 2010) to Revision K Page
- Added Pin Configuration and Functions section, Handling Rating table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section 1

5 Pin Configuration and Functions

Pin Functions

PIN			I/O	DESCRIPTION
NAME	NO.			
	$\begin{aligned} & \text { DCT, } \\ & \text { DCU, } \\ & \text { DQE } \end{aligned}$	YZT		
EN	8	A2	1	Switch enable input
GND	1	A1	-	Ground, 0 V
SCL1	3	C1	I/O	Serial clock, low-voltage side
SCL2	6	C2	I/O	Serial clock, high-voltage side
SDA1	4	D1	1/O	Serial data, low-voltage side
SDA2	5	D2	1/O	Serial data, high-voltage side
$\mathrm{V}_{\text {REF1 }}$	2	B1	I	Low-voltage-side reference supply voltage for SCL1 and SDA1
$\mathrm{V}_{\text {REF2 }}$	7	B2	1	High-voltage-side reference supply voltage for SCL2 and SDA2

6 Specifications

6.1 Absolute Maximum Ratings ${ }^{(1)}$

over operating ambient temperature range (unless otherwise noted)

		MIN	MAX
$\mathrm{V}_{\text {REF1 }}$	DC reference voltage range	UNIT	
$\mathrm{V}_{\text {REF2 }}$	DC reference bias voltage range	-0.5	7
$\mathrm{~V}_{\mathrm{I}}$	Input voltage range ${ }^{(2)}$	V	
$\mathrm{V}_{\mathrm{I} \mathrm{O}}$	Input/output voltage range ${ }^{(2)}$	-0.5	7
	Continuous channel current	-0.5	7
I_{IK}	Input clamp current	$\mathrm{V}_{1}<0$	-0.5
$\mathrm{~T}_{\mathrm{j}(\text { max })}$	Maximum junction temperature	7	V
$\mathrm{~T}_{\text {stg }}$	Storage temperature range		128

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) The input and input/output negative voltage ratings may be exceeded if the input and output current ratings are observed.

6.2 ESD Ratings

			VALUE	UNIT
$\mathrm{V}_{\text {(ESD) }}$	Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ${ }^{(1)}$	± 2000	V
		Charged device model (CDM), per JEDEC specification JESD22-C101, all pins ${ }^{(2)}$	± 1000	

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

			MIN	MAX
	UNIT			
$\mathrm{V}_{\text {I/ }}$	Input/output voltage	SCL1, SDA1, SCL2, SDA2	0	5.5
$\mathrm{~V}_{\text {REF1 } 1}{ }^{(1)}$	Reference voltage		V	
$\mathrm{V}_{\text {REF2 }}{ }^{(1)}$	Reference voltage		5.5	V
EN	Enable input voltage	0	5.5	V
$\mathrm{I}_{\text {PASS }}$	Pass switch current		0	5.5
$\mathrm{~T}_{\mathrm{A}}$	Operating ambient temperature	V		

(1) To support translation, $\mathrm{V}_{\text {REF1 }}$ supports 1.2 V to $\mathrm{V}_{\mathrm{REF} 2}-0.6 \mathrm{~V}$. $\mathrm{V}_{\text {REF2 }}$ must be between $\mathrm{V}_{\text {REF1 }}+0.6 \mathrm{~V}$ to 5.5 V . See Typical Application for more information.

6.4 Thermal Information

THERMAL METRIC ${ }^{(1)}$		PCA9306				UNIT
		DCT	DCU	DQE	YZT	
		8 PINS	8 PINS	8 PINS	8 PINS	
$\mathrm{R}_{\text {өJA }}$	Junction-to-ambient thermal resistance	189.6	210.1	246.5	125.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {өJC(top) }}$	Junction-to-case (top) thermal resistance	119.6	81.9	149.1	1	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {өJB }}$	Junction-to-board thermal resistance	102.1	88.8	100	62.7	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\Psi_{\text {JT }}$	Junction-to-top characterization parameter	44.5	8.3	17.1	3.4	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\Psi_{\text {JB }}$	Junction-to-board characterization parameter	101	88.4	99.8	62.7	${ }^{\circ} \mathrm{C} / \mathrm{W}$

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

PCA9306
www.ti.com

6.5 Electrical Characteristics

over recommended operating ambient temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS			MIN	TYP ${ }^{(1)}$	MAX	UNIT
V_{IK}	Input clamp voltage		$\mathrm{I}_{1}=-18 \mathrm{~mA}$,	$\mathrm{EN}=0 \mathrm{~V}$				-1.2	V
I_{IH}	Input leakage current		$\mathrm{V}_{1}=5 \mathrm{~V}$,	$\mathrm{EN}=0 \mathrm{~V}$				5	$\mu \mathrm{A}$
$\mathrm{C}_{\mathrm{i}(\mathrm{EN})}$	Input capacitance		$\mathrm{V}_{\mathrm{I}}=3 \mathrm{~V}$ or 0				11		pF
$\mathrm{Cio}_{\text {ioff) }}$	Off capacitance	SCLn, SDAn	$\mathrm{V}_{\mathrm{O}}=3 \mathrm{~V}$ or 0 ,	$\mathrm{EN}=0 \mathrm{~V}$			4	6	pF
$\mathrm{Cio}_{\text {(on) }}$	On capacitance	SCLn, SDAn	$\mathrm{V}_{\mathrm{O}}=3 \mathrm{~V}$ or 0 ,	$\mathrm{EN}=3 \mathrm{~V}$			10.5	12.5	pF
$\mathrm{R}_{\mathrm{ON}}{ }^{(2)}$	On-state resistance	SCLn, SDAn	$V_{1}=0$	$\mathrm{I}_{0}=64 \mathrm{~mA}$	$\mathrm{EN}=4.5 \mathrm{~V}$		3.5	5.5	Ω
					$\mathrm{EN}=3 \mathrm{~V}$		4.7	7	
					$\mathrm{EN}=2.3 \mathrm{~V}$		6.3	9.5	
			$\mathrm{V}_{1}=0$	$\mathrm{I}_{0}=15 \mathrm{~mA}$	$\mathrm{EN}=1.5 \mathrm{~V}$		25.5	32	
			$\mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V}^{(3)}$	$\mathrm{I}_{0}=15 \mathrm{~mA}$	$\mathrm{EN}=4.5 \mathrm{~V}$	1	6	15	
					EN = 3 V	20	60	140	
			$\mathrm{V}_{\mathrm{I}}=1.7 \mathrm{~V}^{(3)}$	$\mathrm{I}_{0}=15 \mathrm{~mA}$	$\mathrm{EN}=2.3 \mathrm{~V}$	20	60	140	

(1) All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
(2) Measured by the voltage drop between the SCL1 and SCL2, or SDA1 and SDA2 terminals, at the indicated current through the switch. Minimum ON-state resistance is determined by the lowest voltage of the two terminals.
(3) Measured in current sink configuration only (See Figure 4)

6.6 Switching Characteristics AC Performance (Translating Down) (EN = 3.3 V) ${ }^{(1)}$

over recommended operating ambient temperature range, $\mathrm{EN}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0, \mathrm{~V}_{\mathrm{M}}=1.15 \mathrm{~V}$ (unless otherwise noted) (see Figure 4).

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	
$t_{\text {PLH }}$	SCL2 or SDA2	SCL1 or SDA1	0	0.8	0	0.6	0	0.3	ns
$\mathrm{t}_{\text {PHL }}$			0	1.2	0	1	0	0.5	

(1) Translating down: the high-voltage side driving toward the low-voltage side

6.7 Switching Characteristics AC Performance (Translating Down) (EN = 2.5 V) ${ }^{(1)}$

over recommended operating ambient temperature range, $\mathrm{EN}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0, \mathrm{~V}_{\mathrm{M}}=0.75 \mathrm{~V}$ (unless otherwise noted) (see Figure 4).

PARAMETER	$\begin{aligned} & \text { FROM } \\ & \text { (INPUT) } \end{aligned}$	$\begin{gathered} \text { TO } \\ \text { (OUTPUT) } \end{gathered}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	
tpli	SCL2 or SDA2	SCL1 or SDA1	0	1	0	0.7	0	0.4	ns
$\mathrm{t}_{\text {PHL }}$			0	1.3	0	1	0	0.6	

(1) Translating down: the high-voltage side driving toward the low-voltage side

6.8 Switching Characteristics AC Performance (Translating Up) (EN = 3.3 V) ${ }^{(1)}$

over recommended operating ambient temperature range, $\mathrm{EN}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0, \mathrm{~V}_{\mathrm{T}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{M}}=1.15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300$ Ω (unless otherwise noted) (see Figure 4).

PARAMETER	$\begin{aligned} & \text { FROM } \\ & \text { (INPUT) } \end{aligned}$	$\begin{gathered} \text { TO } \\ \text { (OUTPUT) } \end{gathered}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	
$t_{\text {PLH }}$	SCL1 or SDA1	SCL2 or SDA2	0	0.9	0	0.6	0	0.4	ns
$\mathrm{t}_{\text {PHL }}$			0	1.4	0	1.1	0	0.7	

[^0]
6.9 Switching Characteristics AC Performance (Translating Up) (EN = 2.5 V) ${ }^{(1)}$

over recommended operating ambient temperature range, $\mathrm{EN}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=2.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0, \mathrm{~V}_{\mathrm{T}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{M}}=0.75 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300$ Ω (unless otherwise noted) (see Figure 4).

PARAMETER	FROM(INPUT)	TO (OUTPUT)	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	
$\mathrm{t}_{\text {PLH }}$	SCL1 or SDA1	SCL2 or SDA2	0	1	0	0.6	0	0.4	ns
$\mathrm{t}_{\text {PHL }}$			0	1.3	0	1.3	0	0.8	

(1) Translating up: the low-voltage side driving toward the high-voltage side

6.10 Typical Characteristics

Figure 1. On-Resistance (R_{ON}) vs Input Voltage ($\mathrm{V}_{\text {SDA } 1}$ or $\mathrm{V}_{\mathrm{SCL} 1}$)

Figure 2. On-Resistance (R_{ON}) vs Input Voltage ($\mathrm{V}_{\mathrm{SDA} 1}$ or $\mathrm{V}_{\mathrm{SCL} 1}$)

$\mathrm{V}_{\mathrm{EN}}=2.5 \mathrm{~V}$
$\mathrm{V}_{\mathrm{BIAS}}=\mathrm{GND}$

Figure 3. Typical Bandwidth of PCA9306

7 Parameter Measurement Information

a) Current Source Configuration

b) Current Sink Configuration

Figure 4. Current Source and Current Sink Configurations for \mathbf{R}_{ON} Measurements

USAGE	SWITCH
Translating up	S1
Translating down	S2

Load Circuit

NOTES: A. C_{L} includes probe and jig capacitance
B. All input pulses are supplied by generators having the following characteristics: $\operatorname{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2 \mathrm{~ns}$.
C. The outputs are measured one at a time, with one transition per measurement.

Figure 5. Load Circuit for Outputs

8 Detailed Description

8.1 Overview

The PCA9306 device is a dual bidirectional $\mathrm{I}^{2} \mathrm{C}$ and SMBus voltage-level translator with an enable (EN) input and operates without use of a direction pin. The voltage supply range for $\mathrm{V}_{\text {REF }}$ is 1.2 V to 3.3 V and the supply range for $\mathrm{V}_{\text {REF2 }}$ is 1.8 V to 5.5 V .
The PCA9306 device can also be used to run two buses, one at $400-\mathrm{kHz}$ operating frequency and the other at $100-\mathrm{kHz}$ operating frequency. If the two buses are operating at different frequencies, the $100-\mathrm{kHz}$ bus must be isolated by using the EN pin when the $400-\mathrm{kHz}$ operation of the main bus is required. If the master is running at 400 kHz , the maximum system operating frequency may be less than 400 kHz because of the delays added by the level shifter.
In $I^{2} \mathrm{C}$ applications, the bus capacitance limit of 400 pF restricts the number of devices and bus length. The capacitive load on both sides of the PCA9306 device must be taken into account when approximating the total load of the system, ensuring the sum of both sides is under 400 pF .
Both the SDA and SCL channels of the PCA9306 device have the same electrical characteristics, and there is minimal deviation from one output to another in voltage or propagation delay. This is a benefit over discretetransistor voltage-translation solutions, because the fabrication of the switch is symmetrical. The translator provides excellent ESD protection to lower-voltage devices and at the same time protects less-ESD-resistant devices.

8.2 Functional Block Diagram

Figure 6. Block Diagram of PCA9306

8.3 Feature Description

8.3.1 Enable (EN) Pin

The PCA9306 device is a double-pole, single-throw switch in which the gate of the transistors is controlled by the voltage on the EN pin. In Figure 7, the PCA9306 device is always enabled when power is applied to $\mathrm{V}_{\text {REF2 }}$. In Figure 8, the device is enabled when a control signal from a processor is in a logic-high state.

8.3.2 Voltage Translation

The primary feature of the PCA9306 device is translating voltage from an $I^{2} \mathrm{C}$ bus referenced to $\mathrm{V}_{\text {REF1 }}$ up to an $I^{2} \mathrm{C}$ bus referenced to $\mathrm{V}_{\text {DPU }}$, to which $\mathrm{V}_{\text {REF2 }}$ is connected through a $200-\mathrm{k} \Omega$ pullup resistor. Translation on a standard, open-drain $I^{2} \mathrm{C}$ bus is achieved by simply connecting pullup resistors from SCL1 and SDA1 to $\mathrm{V}_{\text {REF1 }}$ and connecting pullup resistors from SCL2 and SDA2 to $\mathrm{V}_{\text {DPU }}$. Information on sizing the pullup resistors can be found in the Sizing Pullup Resistors section.

8.4 Device Functional Modes

| INPUT
 EN $^{(1)}$ | TRANSLATOR FUNCTION |
| :---: | :---: | :---: |
| H | SCL1 = SCL2, SDA1 = SDA2 |
| L | Disconnect |

(1) The SCL switch conducts if EN is $\geq 1 \mathrm{~V}$ higher than SCL1 or SCL2. The same is true of SDA.

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the Tl component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

9.1.1 General Applications of $\mathrm{I}^{2} \mathrm{C}$

As with the standard $I^{2} C$ system, pullup resistors are required to provide the logic-high levels on the translator bus. The size of these pullup resistors depends on the system, but each side of the repeater must have a pullup resistor. The device is designed to work with standard-mode and fast-mode $I^{2} \mathrm{C}$ devices, in addition to SMBus devices. Standard-mode $I^{2} \mathrm{C}$ devices only specify 3 mA in a generic $\mathrm{I}^{2} \mathrm{C}$ system where standard-mode devices and multiple masters are possible. Under certain conditions, high termination currents can be used. When the SDA1 or SDA2 port is low, the clamp is in the ON state, and a low-resistance connection exists between the SDA1 and SDA2 ports. Assuming the higher voltage is on the SDA2 port when the SDA2 port is high, the voltage on the SDA1 port is limited to the voltage set by $\mathrm{V}_{\text {REF1 }}$. When the SDA1 port is high, the SDA2 port is pulled to the pullup supply voltage of the drain ($\mathrm{V}_{\mathrm{DpU}}$) by the pullup resistors. This functionality allows a seamless translation between higher and lower voltages selected by the user, without the need for directional control. The SCL1-SCL2 channel also functions in the same way as the SDA1-SDA2 channel.

9.2 Typical Application

Figure 7 and Figure 8 show how these pullup resistors are connected in a typical application, as well as two options for connecting the EN pin.

Figure 7. Typical Application Circuit (Switch Always Enabled)

Typical Application (continued)

Figure 8. Typical Application Circuit (Switch Enable Control)

9.2.1 Design Requirements

		MIN	TYP ${ }^{(1)}$	MAX
UNIT				
$V_{\text {REF2 }}$	Reference voltage	$\mathrm{V}_{\text {REF1 }}+0.6$	2.1	5
EN	Enable input voltage	$\mathrm{V}_{\text {REF1 }}+0.6$	2.1	5
$\mathrm{~V}_{\text {REF1 }}$	Reference voltage	1.2	1.5	4.4
I PASS	Pass switch current	6	V	
I $_{\text {REF }}$	Reference-transistor current		5	mA

(1) All typical values are at $T_{A}=25^{\circ} \mathrm{C}$.

9.2.2 Detailed Design Procedure

9.2.2.1 Bidirectional Voltage Translation

For the bidirectional clamping configuration (higher voltage to lower voltage or lower voltage to higher voltage), the EN input must be connected to $\mathrm{V}_{\text {REF2 }}$ and both pins pulled to high-side $\mathrm{V}_{\text {DPU }}$ through a pullup resistor (typically $200 \mathrm{k} \Omega$). This allows $\mathrm{V}_{\text {REF2 }}$ to regulate the EN input. A 100-pF filter capacitor connected to $\mathrm{V}_{\text {REF2 }}$ is recommended. The $I^{2} \mathrm{C}$ bus master output can be push-pull or open-drain (pullup resistors may be required) and the $I^{2} \mathrm{C}$ bus device output can be totem pole or open-drain (pullup resistors are required to pull the SCL2 and SDA2 outputs to $\mathrm{V}_{\text {DPU }}$). However, if either output is push-pull, data must be unidirectional or the outputs must be 3 -state capable and be controlled by some direction-control mechanism to prevent high-to-low contentions in either direction. If both outputs are open-drain, no direction control is needed.
The reference supply voltage $\left(\mathrm{V}_{\mathrm{REF} 1}\right)$ is connected to the core power-supply voltage of the processor.

9.2.2.2 Sizing Pullup Resistors

To get an estimate for the range of values that can be used for the pullup resistor, please refer to the application note SLVA689. Figure 9 and Figure 10 respectively show the maximum and minimum pullup resistance allowable by the $\mathrm{I}^{2} \mathrm{C}$ specification for standard-mode (100 kHz) and fast-mode (400 kHz) operation.

9.2.2.3 PCA9306 Bandwidth

The maximum frequency of the PCA9306 device depends on the application. The device can operate at speeds of $>100 \mathrm{MHz}$ given the correct conditions. The maximum frequency is dependent upon the loading of the application. The PCA9306 device behaves like a standard switch where the bandwidth of the device is dictated by the on-resistance and on-capacitance of the device.
Figure 3 shows a bandwidth measurement of the PCA9306 device using a two-port network analyzer.
However, this is an analog type of measurement. For digital applications, the signal should not degrade up to the fifth harmonic of the digital signal. As a rule of thumb, the frequency bandwidth should be at least five times the maximum digital clock rate. This component of the signal is very important in determining the overall shape of the digital signal. In the case of the PCA9306 device, digital clock frequency of $>100 \mathrm{MHz}$ can be achieved.

The PCA9306 device does not provide any drive capability like the PCA9515 or PCA9517 series of devices. Therefore, higher-frequency applications require higher drive strength from the host side. No pullup resistor is needed on the host side (3.3 V) if the PCA9306 device is being driven by standard CMOS push-pull output driver. Ideally, it is best to minimize the trace length from the PCA9306 device on the sink side (1.8 V) to minimize signal degradation.
You can then use a simple formula to compute the maximum practical frequency component or the knee frequency ($f_{\text {knee }}$). All fast edges have an infinite spectrum of frequency components. However, there is an inflection (or knee) in the frequency spectrum of fast edges where frequency components higher than $f_{\text {knee }}$ are insignificant in determining the shape of the signal.
To calculate $\mathrm{f}_{\text {knee }}$:

$$
\begin{aligned}
& \mathrm{f}_{\text {knee }}=0.5 / \mathrm{RT}(10 \%-90 \%) \\
& \mathrm{f}_{\text {knee }}=0.4 / \text { RT }(20 \%-80 \%)
\end{aligned}
$$

For signals with rise-time characteristics based on 10 - to 90 -percent thresholds, $f_{k n e e}$ is equal to 0.5 divided by the rise time of the signal. For signals with rise-time characteristics based on 20-to 80-percent thresholds, which is very common in many current device specifications, $\mathrm{f}_{\mathrm{knee}}$ is equal to 0.4 divided by the rise time of the signal.
Some guidelines to follow that help maximize the performance of the device:

- Keep trace length to a minimum by placing the PCA9306 device close to the $I^{2} \mathrm{C}$ output of the processor.
- The trace length should be less than half the time of flight to reduce ringing and line reflections or nonmonotonic behavior in the switching region.
- To reduce overshoots, a pullup resistor can be added on the 1.8 V side; be aware that a slower fall time is to be expected.

9.2.3 Application Curve

Figure 9. Maximum Pullup Resistance $\left(\mathrm{R}_{\mathrm{p}(\text { max })}\right)$ vs Bus Capacitance (C_{b})

$\mathrm{V}_{\mathrm{OL}}=0.2^{*} \mathrm{~V}_{\mathrm{DPUX}}, \mathrm{I}_{\mathrm{OL}}=2 \mathrm{~mA}$ when $\mathrm{V}_{\mathrm{DPUX}} \leq 2 \mathrm{~V}$
$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=3 \mathrm{~mA}$ when $\mathrm{V}_{\mathrm{DPUX}}>2 \mathrm{~V}$
Figure 10. Minimum Pullup Resistance $\left(\mathbf{R}_{\mathbf{p}(\min)}\right)$ vs Pullup Reference Voltage (VPUX)

10 Power Supply Requirements

For supplying power to the PCA9306 device, the $\mathrm{V}_{\text {REF1 }}$ pin can be connected directly to a power supply. The $\mathrm{V}_{\text {REF2 }}$ pin must be connected to the $\mathrm{V}_{\text {DPU }}$ power supply through a $200-\mathrm{k} \Omega$ resistor. Failure to have a highimpedance resistor between $\mathrm{V}_{\text {REF2 }}$ and $\mathrm{V}_{\text {DPU }}$ results in excessive current draw and unreliable device operation. It is also worth noting, that in order to support voltage translation, the PCA9306 must have the EN and VREF2 pins shorted and then pulled up to $\mathrm{V}_{\mathrm{DPU}}$ through a high-impedance resistor.

11 Layout

11.1 Layout Guidelines

For printed-circuit board (PCB) layout of the PCA9306 device, common PCB layout practices should be followed, but additional concerns related to high-speed data transfer such as matched impedances and differential pairs are not a concern for $I^{2} \mathrm{C}$ signal speeds.
In all PCB layouts, it is a best practice to avoid right angles in signal traces, to fan out signal traces away from each other on leaving the vicinity of an integrated circuit (IC), and to use thicker trace widths to carry higher amounts of current that commonly pass through power and ground traces. The $100-\mathrm{pF}$ filter capacitor should be placed as close to $\mathrm{V}_{\text {REF2 }}$ as possible. A larger decoupling capacitor can also be used, but a longer time constant of two capacitors and the $200-\mathrm{k} \Omega$ resistor results in longer turnon and turnoff times for the PCA9306 device. These best practices are shown in Figure 11.
For the layout example provided in Figure 11, it would be possible to fabricate a PCB with only two layers by using the top layer for signal routing and the bottom layer as a split plane for power (V_{CC}) and ground (GND). However, a four-layer board is preferable for boards with higher-density signal routing. On a four-layer PCB, it is common to route signals on the top and bottom layer, dedicate one internal layer to a ground plane, and dedicate the other internal layer to a power plane. In a board layout using planes or split planes for power and ground, vias are placed directly next to the surface-mount component pad, which must attach to V_{CC} or GND, and the via is connected electrically to the internal layer or the other side of the board. Vias are also used when a signal trace must be routed to the opposite side of the board, but this technique is not demonstrated in Figure 11.

11.2 Layout Example

Figure 11. PCA9306 Layout Example

12 Device and Documentation Support

12.1 Trademarks

All trademarks are the property of their respective owners.

12.2 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.3 Glossary

SLYZ022 - TI Glossary.
This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the mostcurrent data available for the designated device. This data is subject to change without notice and without revision of this document. For browser-based versions of this data sheet, see the left-hand navigation pane.

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
PCA9306DCTR	ACTIVE	SM8	DCT	8	3000	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	$\begin{aligned} & 7 B D \\ & Y \end{aligned}$	Samples
PCA9306DCTRE4	ACTIVE	SM8	DCT	8	3000	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	$\begin{aligned} & 7 B D \\ & Y \end{aligned}$	Samples
PCA9306DCTRG4	ACTIVE	SM8	DCT	8	3000	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	$\begin{aligned} & \text { 7BD } \\ & \mathrm{Y} \end{aligned}$	Samples
PCA9306DCTT	ACTIVE	SM8	DCT	8	250	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	$\begin{aligned} & 7 B D \\ & \mathrm{Y} \end{aligned}$	Samples
PCA9306DCTTE4	ACTIVE	SM8	DCT	8	250	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	$\begin{aligned} & 7 B D \\ & \mathrm{Y} \\ & \hline \end{aligned}$	Samples
PCA9306DCTTG4	ACTIVE	SM8	DCT	8	250	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	$\begin{aligned} & 7 B D \\ & \mathrm{Y} \end{aligned}$	Samples
PCA9306DCUR	ACTIVE	VSSOP	DCU	8	3000	Green (RoHS \& no Sb/Br)	CU NIPDAU \| CU SN	Level-1-260C-UNLIM	-40 to 85	$\begin{aligned} & \text { (7BDP ~ 7BDS ~ BD) } \\ & 7 \mathrm{Y} \end{aligned}$	Samples
PCA9306DCURE4	ACTIVE	VSSOP	DCU	8	3000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	7BDS	Samples
PCA9306DCURG4	ACTIVE	VSSOP	DCU	8	3000	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	7BDS	Samples
PCA9306DCUT	ACTIVE	VSSOP	DCU	8	250	Green (RoHS \& no Sb/Br)	CU NIPDAU \| CU SN	Level-1-260C-UNLIM	-40 to 85	$\begin{aligned} & \text { (7BDP ~ 7BDS ~ BD) } \\ & 7 \mathrm{Y} \end{aligned}$	Samples
PCA9306DCUTE4	ACTIVE	VSSOP	DCU	8	250	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	7BDS	Samples
PCA9306DCUTG4	ACTIVE	VSSOP	DCU	8	250	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	7BDS	Samples
PCA9306DQER	ACTIVE	X2SON	DQE	8	5000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU \| CU NIPDAUAG	Level-1-260C-UNLIM	-40 to 85	(3M ~ 7F)	Samples
PCA9306YZTR	ACTIVE	DSBGA	YZT	8	3000	Green (RoHS \& no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	7F	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but Tl does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): Tl's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS \& no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF PCA9306 :

- Automotive: PCA9306-Q1

NOTE: Qualified Version Definitions:

- Automotive- Q100 devices qualified for high-reliability automotive applications targeting zero defects

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter $(\mathbf{m m})$	Reel Width ($\mathbf{m m})$	A0 $(\mathbf{m m})$	$\mathbf{B 0}$ $(\mathbf{m m})$	K0 $(\mathbf{m m})$	P1 $(\mathbf{m m})$	\mathbf{W} $(\mathbf{m m})$	Pin1 Quadrant
PCA9306DCTR	SM8	DCT	8	3000	180.0	13.0	3.35	4.5	1.55	4.0	12.0	Q3
PCA9306DCTT	SM8	DCT	8	250	180.0	13.0	3.35	4.5	1.55	4.0	12.0	Q3
PCA9306DCUR	VSSOP	DCU	8	3000	180.0	9.0	2.05	3.3	1.0	4.0	8.0	Q3
PCA9306DCUR	VSSOP	DCU	8	3000	180.0	8.4	2.25	3.35	1.05	4.0	8.0	Q3
PCA9306DCURG4	VSSOP	DCU	8	3000	180.0	8.4	2.25	3.35	1.05	4.0	8.0	Q3
PCA9306DCUTG4	VSSOP	DCU	8	250	180.0	8.4	2.25	3.35	1.05	4.0	8.0	Q3
PCA9306DQER	X2SON	DQE	8	5000	180.0	8.4	1.2	1.6	0.55	4.0	8.0	Q1
PCA9306DQER	X2SON	DQE	8	5000	180.0	9.5	1.15	1.6	0.5	4.0	8.0	Q1
PCA9306YZTR	DSBGA	YZT	8	3000	180.0	8.4	1.02	2.02	0.75	4.0	8.0	Q1

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
PCA9306DCTR	SM8	DCT	8	3000	182.0	182.0	20.0
PCA9306DCTT	SM8	DCT	8	250	182.0	182.0	20.0
PCA9306DCUR	VSSOP	DCU	8	3000	182.0	182.0	20.0
PCA9306DCUR	VSSOP	DCU	8	3000	202.0	201.0	28.0
PCA9306DCURG4	VSSOP	DCU	8	3000	202.0	201.0	28.0
PCA9306DCUTG4	VSSOP	DCU	8	250	202.0	201.0	28.0
PCA9306DQER	X2SON	DQE	8	5000	202.0	201.0	28.0
PCA9306DQER	X2SON	DQE	8	5000	184.0	184.0	19.0
PCA9306YZTR	DSBGA	YZT	8	3000	182.0	182.0	20.0

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion
D. Falls within JEDEC MO-187 variation DA.

DCT (R-PDSO-G8)
PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

DCU (R-PDSO-G8)

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
D. Falls within JEDEC MO-187 variation CA.

DCU (S-PDSO-G8)
PLASTIC SMALL OUTLINE PACKAGE (DIE DOWN)

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

Bottom View

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
B. This drawing is subject to change without notice.
C. SON (Small Outline No-Lead) package configuration.
D. This package complies to JEDEC MO-287 variation X2EAF.

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads. If 2 mil solder mask is outside PCB vendor capability, it is advised to omit solder mask.
E. Maximum stencil thickness $0,1016 \mathrm{~mm}$ (4 mils). All linear dimensions are in millimeters.
F. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
G. Over-printing land for acceptable area ratio is not viable due to land width and bridging potential. Customer may further reduce side aperture dimensions if stencil manufacturing process allows for sufficient release at smaller opening.
H. Suggest stencils cut with lasers such as Fiber Laser that produce the greatest positional accuracy.
I. Component placement force should be minimized to prevent excessive paste block deformation.
YZT (R-XBGA-N8)

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
B. This drawing is subject to change without notice.
C. NanoFree ${ }^{T M}$ package configuration.

NanoFree is a trademark of Texas Instruments.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in Tl's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.
TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, Tl's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products

Audio
Amplifiers
Data Converters
DLP® Products
DSP
Clocks and Timers
Interface
Logic
Power Mgmt
Microcontrollers
RFID
OMAP Applications Processors
Wireless Connectivity

Applications

Automotive and Transportation
Communications and Telecom
Computers and Peripherals
Consumer Electronics
Energy and Lighting
Industrial
Medical
Security
Space, Avionics and Defense
Video and Imaging

TI E2E Community

www.ti.com/automotive
www.ti.com/communications
www.ti.com/computers
www.ti.com/consumer-apps
www.ti.com/energy
www.ti.com/industrial
www.ti.com/medical
www.ti.com/security
www.ti.com/space-avionics-defense
www.ti.com/video
e2e.ti.com
www.ti.com/wirelessconnectivity

[^0]: (1) Translating up: the low-voltage side driving toward the high-voltage side

