- Single or Dual-Supply Operation
- Wide Range of Supply Voltages 2 V to 18 V
- Low Supply Current Drain $150 \mu \mathrm{~A}$ Typ at 5 V
- Fast Response Time . . . 200 ns Typ for TTL-Level Input Step
- Built-in ESD Protection
- High Input Impedance . . . 1012 Ω Typ
- Extremely Low Input Bias Current 5 pA Typ
- Ultrastable Low Input Offset Voltage
- Input Offset Voltage Change at Worst-Case Input Conditions Typically $0.23 \mu \mathrm{~V} /$ Month, Including the First 30 Days
- Common-Mode Input Voltage Range Includes Ground
- Output Compatible With TTL, MOS, and CMOS
- Pin-Compatible With LM393

description

This device is fabricated using LinCMOS ${ }^{\text {TM }}$ technology and consists of two independent voltage comparators, each designed to operate from a single power supply. Operation from dual supplies is also possible if the difference between the two supplies is 2 V to 18 V . Each device features extremely high input impedance (typically greater than $10^{12} \Omega$), allowing direct interfacing with high-impedance sources. The outputs are n -channel open-drain configurations and can be connected to achieve positive-logic wired-AND relationships.
The TLC372 has internal electrostatic discharge (ESD) protection circuits and has been classified with a 1000-V ESD rating using human body model testing. However, care should be exercised in handling this device as exposure to ESD may result in a degradation of the device parametric performance.

TLC372C, TLC372I, TLC372M, TLC372Q
D, P, OR PW PACKAGE
TLC372M ... JG PACKAGE
(TOP VIEW)

TLC372M... FK PACKAGE (TOP VIEW)

NC - No internal connection
TLC372M U PACKAGE (TOP VIEW)

symbol (each comparator)

The TLC372C is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. The TLC372l is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. The TLC372M is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The TLC372Q is characterized for operation from $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.

TLC372

LinCMOS ${ }^{\text {TM }}$ DUAL DIFFERENTIAL COMPARATORS

SLCS114E - NOVEMBER 1983 - REVISED JULY 2008

equivalent schematic (each comparator)

AVAILABLE OPTIONS(1)

$\mathrm{T}_{\text {A }}$	V_{10} max AT $25^{\circ} \mathrm{C}$	PACKAGED DEVICES					
		SMALL OUTLINE (D) ${ }^{(2)}$	$\begin{aligned} & \text { CARIP } \\ & \text { CARIER } \\ & (\text { FK }) \end{aligned}$	CERAMIC DIP (JG)	$\underset{\text { DIP }}{\text { PLASTIC }}$ (P)	$\begin{gathered} \text { TSSOP } \\ \text { (PW) } \end{gathered}$	CERAMIC FLAT PACK (U)
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	5 mV	TLC372CD	-	-	TLC372CP	TLC372CPW	-
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	5 mV	TLC372ID	-	-	TLC372IP	-	-
$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	5 mV	TLC372MD	TLC372MFK	TLC372MJG	TLC372MP	-	TLC372MU
$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	5 mV	TLC372QD	-	-	TLC372QP	-	-

1. For the most current package and ordering information see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.
2. The D packages are available taped and reeled. Add R suffix to device type (e.g., TLC372CDR).

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Supply voltage, V_{DD} (see Note 1) 18 V
Differential input voltage, $\mathrm{V}_{\text {ID }}$ (see Note 2) $\pm 18 \mathrm{~V}$
Input voltage range, V_{I} -0.3 V to 18 V
Output voltage, V_{O} 18 V
Input current, I। $\pm 5 \mathrm{~mA}$
Output current, IO 20 mA
Duration of output short circuit to ground (see Note 3) unlimited
Package thermal impedance, θ_{JA} (see Notes 6 and 7):
$97.1^{\circ} \mathrm{C} / \mathrm{W}$
$97.1^{\circ} \mathrm{C} / \mathrm{W}$
P package $84.6^{\circ} \mathrm{C} / \mathrm{W}$
PW package $149^{\circ} \mathrm{C} / \mathrm{W}$
Package thermal impedance, θ_{JC} (see Notes 6 and 7): FK package $5.6^{\circ} \mathrm{C} / \mathrm{W}$
JG package $14.5^{\circ} \mathrm{C} / \mathrm{W}$
U package $14.7^{\circ} \mathrm{C} / \mathrm{W}$
Operating free-air temperature range, T_{A} : TLC372C $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
TLC372| $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
TLC372M $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
TLC372Q $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Storage temperature range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Case temperature for 60 seconds: FK package $260^{\circ} \mathrm{C}$
Lead temperature $1,6 \mathrm{~mm}(1 / 16 \mathrm{inch})$ from case for 10 seconds: D, P, or PW package $260^{\circ} \mathrm{C}$
Lead temperature $1,6 \mathrm{~mm}$ ($1 / 16 \mathrm{inch}$) from case for 60 seconds: JG or U package $300^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 3. All voltage values except differential voltages are with respect to network ground.
4. Differential voltages are at $\mathrm{IN}+$ with respect to $\mathrm{IN}-$.
5. Short circuits from outputs to V_{DD} can cause excessive heating and eventual device destruction.
6. Maximum power dissipation is a function of $T_{J}(\max), \theta_{J A}$, and T_{A}. The maximum allowable power dissipation at any allowable ambient temperature is $\mathrm{P}_{\mathrm{D}}=\left(\mathrm{T}_{J}(\max)-T_{A}\right) / \theta_{J A}$. Operating at the absolute maximum T_{J} of $150^{\circ} \mathrm{C}$ can affect reliability.
7. The package thermal impedance is calculated in accordance with JESD 51-7 (plastic) or MIL-STD-883 Method 1012 (ceramic).
recommended operating conditions

		TLC372C		TLC3721		TLC372M		TLC372Q		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
Supply voltage, V_{DD}		3	16	3	16	4	16	4	16	V
Common-mode input voltage, VIC	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	0	3.5	0	3.5	0	3.5	0	3.5	V
	$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$	0	8.5	0	8.5	0	8.5	0	8.5	
Operating free-air temperature, T_{A}		0	70	-40	85	-55	125	-40	125	${ }^{\circ} \mathrm{C}$

electrical characteristics at specified free-air temperature, $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ (unless otherwise noted)

PARAMETER		TEST CONDITIONS		TA ${ }^{\dagger}$	TLC372C			TLC372I			TLC372M, TLC372Q			UNIT		
		MIN	TYP		MAX	MIN	TYP	MAX	MIN	TYP	MAX					
V_{10}	Input offset voltage			$\mathrm{V}_{\text {IC }}=\mathrm{V}_{\text {ICR }} \mathrm{min}$,	See Note 4	$25^{\circ} \mathrm{C}$		1	5		1	5		1	5	mV
		Full range					6.5			7			10			
IIO	Input offset current			$25^{\circ} \mathrm{C}$	1			1			1			pA		
				MAX	0.3			1			10			nA		
IIB	Input bias current			$25^{\circ} \mathrm{C}$	5			5			5			pA		
				MAX	0.6			2			20			nA		
VICR	Common-mode input voltage range			$25^{\circ} \mathrm{C}$	$\begin{gathered} 0 \text { to } \\ \mathrm{V}_{\mathrm{DD}}-1 \end{gathered}$			$\begin{gathered} 0 \text { to } \\ V_{D D}-1 \end{gathered}$			$\begin{gathered} 0 \text { to } \\ \mathrm{V}_{\mathrm{DD}}{ }^{-1} \end{gathered}$			V		
				Full range	$\begin{gathered} 0 \text { to } \\ \mathrm{V}_{\mathrm{D}}-1.5 \end{gathered}$			$\begin{gathered} 0 \text { to } \\ \mathrm{V}_{\mathrm{DD}}-1.5 \end{gathered}$			$\begin{gathered} 0 \text { to } \\ \mathrm{V}_{\mathrm{DD}}-1.5 \end{gathered}$					
IOH	High-level output current	V ID $=1 \mathrm{~V}$	$\mathrm{V}_{\mathrm{OH}}=5 \mathrm{~V}$	$25^{\circ} \mathrm{C}$	0.1			0.1			0.1			nA		
			$\mathrm{V}_{\mathrm{OH}}=15 \mathrm{~V}$	Full range			1			1			3	$\mu \mathrm{A}$		
VOL	Low-level output voltage	$\mathrm{V}_{\mathrm{IL}}=-1 \mathrm{~V}$,	$\mathrm{IOL}=4 \mathrm{~mA}$	$25^{\circ} \mathrm{C}$		150	400		150	400		150	400	mV		
				Full range			700			700			700			
lOL	Low-level output current	$\mathrm{V}_{1 \mathrm{D}}=-1 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{OL}}=1.5 \mathrm{~V}$	$25^{\circ} \mathrm{C}$	6	16		6	16		6	16		mA		
IDD	Supply current (two comparators)	V ID $=1 \mathrm{~V}$,	No load	$25^{\circ} \mathrm{C}$		150	300		150	300		150	300	$\mu \mathrm{A}$		
				Full range			400			400			400			

\dagger All characteristics are measured with zero common-mode input voltage unless otherwise noted. Full range is $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ for $\mathrm{TLC} 372 \mathrm{C},-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ for TLC 372 I , and $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ for TLC372M and $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ for TLC372Q. IMPORTANT: See Parameter Measurement Information.
NOTE 8: The offset voltage limits given are the maximum values required to drive the output above 4 V or below 400 mV with a $10-\mathrm{k} \Omega$ resistor between the output and V DD. They can

switching characteristics, $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS		MIN TYP	MAX	UNIT
Response time	R_{L} connected to 5 V through $5.1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \ddagger$, See Note 5	100-mV input step with 5-mV overdrive	650		ns
		TTL-level input step	200		

$\mp C_{L}$ includes probe and jig capacitance.
NOTE 9: The response time specified is the interval between the input step function and the instant when the output crosses 1.4 V .
electrical characteristics at specified free-air temperature, $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (unless otherwise noted)

PARAMETER		TEST CONDITIONS \dagger		TLC372Y			UNIT		
		MIN	TYP	MAX					
V_{10}	Input offset voltage			$\mathrm{V}_{\text {IC }}=\mathrm{V}_{\text {ICR }}$ min,	See Note 4		1	5	mV
${ }_{10}$	Input offset current				1		pA		
IIB	Input bias current				5		pA		
VICR	Common-mode input voltage range			$\begin{gathered} 0 \text { to } \\ V_{D D}-1 \end{gathered}$			V		
${ }^{\text {IOH }}$	High-level output current	$\mathrm{V}_{\text {ID }}=1 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{OH}}=5 \mathrm{~V}$		0.1		nA		
V OL	Low-level output voltage	$\mathrm{V}_{\text {ID }}=-1 \mathrm{~V}$,	$\mathrm{IOL}=4 \mathrm{~mA}$		150	400	mV		
${ }^{\text {IOL }}$	Low-level output current	$\mathrm{V}_{\text {ID }}=-1 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{OL}}=1.5 \mathrm{~V}$	6	16		mA		
IDD	Supply current (two comparators)	$\mathrm{V}_{\text {ID }}=1 \mathrm{~V}$,	No load		150	300	$\mu \mathrm{A}$		

\dagger All characteristics are measured with zero common-mode input voltage unless otherwise noted. IMPORTANT: See Parameter Measurement Information.
NOTE 4: The offset voltage limits given are the maximum values required to drive the output above 4 V or below 400 mV with a $10-\mathrm{k} \Omega$ resistor between the output and V_{DD}. They can be verified by applying the limit value to the input and checking for the appropriate output state.

PARAMETER MEASUREMENT INFORMATION

The digital output stage of the TLC372 can be damaged if it is held in the linear region of the transfer curve. Conventional operational amplifier/comparator testing incorporates the use of a servo loop that is designed to force the device output to a level within this linear region. Since the servo-loop method of testing cannot be used, the following alternatives for measuring parameters such as input offset voltage, common-mode rejection, etc., are offered.

To verify that the input offset voltage falls within the limits specified, the limit value is applied to the input as shown in Figure 1(a). With the noninverting input positive with respect to the inverting input, the output should be high. With the input polarity reversed, the output should be low.

A similar test can be made to verify the input offset voltage at the common-mode extremes. The supply voltages can be slewed as shown in Figure 1(b) for the $\mathrm{V}_{\text {ICR }}$ test, rather than changing the input voltages, to provide greater accuracy.

Figure 1. Method for Verifying That Input Offset Voltage is Within Specified Limits

PARAMETER MEASUREMENT INFORMATION

A close approximation of the input offset voltage can be obtained by using a binary search method to vary the differential input voltage while monitoring the output state. When the applied input voltage differential is equal, but opposite in polarity, to the input offset voltage, the output changes states.
Figure 2 illustrates a practical circuit for direct dc measurement of input offset voltage that does not bias the comparator into the linear region. The circuit consists of a switching-mode servo loop in which U1a generates a triangular waveform of approximately $20-\mathrm{mV}$ amplitude. U1b acts as a buffer, with C 2 and R 4 removing any residual dc offset. The signal is then applied to the inverting input of the comparator under test, while the noninverting input is driven by the output of the integrator formed by U1c through the voltage divider formed by R9 and R10. The loop reaches a stable operating point when the output of the comparator under test has a duty cycle of exactly 50%, which can only occur when the incoming triangle wave is sliced symmetrically or when the voltage at the noninverting input exactly equals the input offset voltage.

Voltage divider R9 and R10 provides a step up of the input offset voltage by a factor of 100 to make measurement easier. The values of R5, R8, R9, and R10 can significantly influence the accuracy of the reading; therefore, it is suggested that their tolerance level be 1% or lower.
Measuring the extremely low values of input current requires isolation from all other sources of leakage current and compensation for the leakage of the test socket and board. With a good picoammeter, the socket and board leakage can be measured with no device in the socket. Subsequently, this open-socket leakage value can be subtracted from the measurement obtained with a device in the socket to obtain the actual input current of the device.

Figure 2. Circuit for Input Offset Voltage Measurement

PARAMETER MEASUREMENT INFORMATION

Response time is defined as the interval between the application of an input step function and the instant when the output reaches 50% of its maximum value. Response time, low-to-high level output, is measured from the leading edge of the input pulse, while response time, high-to-low level output, is measured from the trailing edge of the input pulse. Response-time measurement at low input signal levels can be greatly affected by the input offset voltage. The offset voltage should be balanced by the adjustment at the inverting input as shown in Figure 3, so that the circuit is just at the transition point. Then a low signal, for example $105-\mathrm{mV}$ or $5-\mathrm{mV}$ overdrive, causes the output to change state.

NOTE A: C_{L} includes probe and jig capacitance.
Figure 3. Response, Rise, and Fall Times Circuit and Voltage Waveforms

PRINCIPLES OF OPERATION

LinCMOS ${ }^{\text {TM }}$ process

The LinCMOS ${ }^{\text {TM }}$ process is a Linear polysilicon-gate complementary-MOS process. Primarily designed for single-supply applications, LinCMOS ${ }^{\text {TM }}$ products facilitate the design of a wide range of high-performance analog functions, from operational amplifiers to complex mixed-mode converters.
While digital designers are experienced with CMOS, MOS technologies are relatively new for analog designers. This short guide is intended to answer the most frequently asked questions related to the quality and reliability of LinCMOS ${ }^{\text {TM }}$ products. Further questions should be directed to the nearest Texas Instruments field sales office.

electrostatic discharge

CMOS circuits are prone to gate oxide breakdown when exposed to high voltages even if the exposure is only for very short periods of time. Electrostatic discharge (ESD) is one of the most common causes of damage to CMOS devices. It can occur when a device is handled without proper consideration for environmental electrostatic charges, e.g. during board assembly. If a circuit in which one amplifier from a dual operational amplifier is being used and the unused pins are left open, high voltages tends to develop. If there is no provision for ESD protection, these voltages may eventually punch through the gate oxide and cause the device to fail. To prevent voltage buildup, each pin is protected by internal circuitry.
Standard ESD-protection circuits safely shunt the ESD current by providing a mechanism whereby one or more transistors break down at voltages higher than the normal operating voltages but lower than the breakdown voltage of the input gate. This type of protection scheme is limited by leakage currents which flow through the shunting transistors during normal operation after an ESD voltage has occurred. Although these currents are small, on the order of tens of nanoamps, CMOS amplifiers are often specified to draw input currents as low as tens of picoamps.
To overcome this limitation, Texas Instruments design engineers developed the patented ESD-protection circuit shown in Figure 4. This circuit can withstand several successive 1-kV ESD pulses, while reducing or eliminating leakage currents that may be drawn through the input pins. A more detailed discussion of the operation of Texas Instruments's ESD- protection circuit is presented on the next page.
All input and output pins on LinCMOS and Advanced LinCMOS ${ }^{\text {TM }}$ products have associated ESD-protection circuitry that undergoes qualification testing to withstand 1000 V discharged from a $100-\mathrm{pF}$ capacitor through a $1500-\Omega$ resistor (human body model) and 200 V from a $100-\mathrm{pF}$ capacitor with no current-limiting resistor (charged device model). These tests simulate both operator and machine handling of devices during normal test and assembly operations.

Figure 4. LinCMOS ${ }^{\text {TM }}$ ESD-Protection Schematic

PRINCIPLES OF OPERATION

input protection circuit operation

Texas Instruments' patented protection circuitry allows for both positive-and negative-going ESD transients. These transients are characterized by extremely fast rise times and usually low energies, and can occur both when the device has all pins open and when it is installed in a circuit.

positive ESD transients

Initial positive charged energy is shunted through Q 1 to V_{SS}. Q1 turns on when the voltage at the input rises above the voltage on the V_{DD} pin by a value equal to the V_{EB} of Q 1 . The base current increases through R2 with input current as Q1 saturates. The base current through R2 forces the voltage at the drain and gate of Q2 to exceed its threshold level ($\mathrm{V}_{\mathrm{T}} \sim 22 \mathrm{~V}$ to 26 V) and turn Q 2 on. The shunted input current through Q 1 to V_{SS} is now shunted through the n-channel enhancement-type MOSFET Q2 to V_{SS}. If the voltage on the input pin continues to rise, the breakdown voltage of the zener diode D3 is exceeded, and all remaining energy is dissipated in R1 and D3. The breakdown voltage of D3 is designed to be 24 V to 27 V , which is well below the gate oxide voltage of the circuit to be protected.

negative ESD transients

The negative charged ESD transients are shunted directly through D1. Additional energy is dissipated in R1 and D2 as D2 becomes forward biased. The voltage seen by the protected circuit is -0.3 V to -1 V (the forward voltage of D1 and D2).

circuit-design considerations

LinCMOS ${ }^{\text {TM }}$ products are being used in actual circuit environments that have input voltages that exceed the recommended common-mode input voltage range and activate the input protection circuit. Even under normal operation, these conditions occur during circuit power up or power down, and in many cases, when the device is being used for a signal conditioning function. The input voltages can exceed $V_{I C R}$ and not damage the device only if the inputs are current limited. The recommended current limit shown on most product data sheets is $\pm 5 \mathrm{~mA}$. Figure 5 and Figure 6 show typical characteristics for input voltage versus input current.

Normal operation and correct output state can be expected even when the input voltage exceeds the positive supply voltage. Again, the input current should be externally limited even though internal positive current limiting is achieved in the input protection circuit by the action of Q1. When Q1 is on, it saturates and limits the current to approximately $5-\mathrm{mA}$ collector current by design. When saturated, Q1 base current increases with input current. This base current is forced into the V_{DD} pin and into the device I_{DD} or the V_{DD} supply through R2 producing the current limiting effects shown in Figure 5. This internal limiting lasts only as long as the input voltage is below the V_{T} of Q2.
When the input voltage exceeds the negative supply voltage, normal operation is affected and output voltage states may not be correct. Also, the isolation between channels of multiple devices (duals and quads) can be severely affected. External current limiting must be used since this current is directly shunted by D1 and D2 and no internal limiting is achieved. If normal output voltage states are required, an external input voltage clamp is required (see Figure 7).

PRINCIPLES OF OPERATION

circuit-design considerations (continued)

Figure 5

INPUT CURRENT
vs
NEGATIVE INPUT VOLTAGE

Figure 6

NOTE A: If the correct output state is required when the negative input is less than GND, a schottky clamp is required.
Figure 7. Typical Input Current-Limiting Configuration for a LinCMOS ${ }^{\text {m }}$ Comparator

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
5962-87658012A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	$\begin{aligned} & 5962- \\ & \text { 87658012A } \\ & \text { TLC372MFKB } \end{aligned}$	Samples
5962-8765801PA	ACTIVE	CDIP	JG	8	1	TBD	A42	N / A for Pkg Type	-55 to 125	$\begin{aligned} & \text { 8765801PA } \\ & \text { TLC372M } \end{aligned}$	Samples
5962-9554901NXD	ACTIVE	SOIC	D	8	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	Q372M	Samples
5962-9554901NXDR	ACTIVE	SOIC	D	8	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	Q372M	Samples
TLC372CD	ACTIVE	SOIC	D	8	75	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	372C	Samples
TLC372CDG4	ACTIVE	SOIC	D	8	75	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	372C	Samples
TLC372CDR	ACTIVE	SOIC	D	8	2500	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	372C	Samples
TLC372CDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	372C	Samples
TLC372CP	ACTIVE	PDIP	P	8	50	Pb -Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	TLC372CP	Samples
TLC372CPSR	ACTIVE	SO	PS	8	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	P372	Samples
TLC372CPSRG4	ACTIVE	SO	PS	8	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	P372	Samples
TLC372CPW	ACTIVE	TSSOP	PW	8	150	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	P372	Samples
TLC372CPWG4	ACTIVE	TSSOP	PW	8	150	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	P372	Samples
TLC372CPWLE	OBSOLETE	TSSOP	PW	8		TBD	Call TI	Call TI	0 to 70		
TLC372CPWR	ACTIVE	TSSOP	PW	8	2000	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	P372	Samples
TLC372CPWRG4	ACTIVE	TSSOP	PW	8	2000	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	P372	Samples
TLC372ID	ACTIVE	SOIC	D	8	75	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	3721	Samples

PACKAGE OPTION ADDENDUM

10-Jun-2014

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
TLC372IDG4	ACTIVE	SOIC	D	8	75	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	3721	Samples
TLC372IDR	ACTIVE	SOIC	D	8	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	3721	Samples
TLC372IDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	3721	Samples
TLC372IP	ACTIVE	PDIP	P	8	50	Pb-Free (RoHS)	CU NIPDAU	N/A for Pkg Type	-40 to 85	TLC372IP	Samples
TLC372IPE4	ACTIVE	PDIP	P	8	50	Pb-Free (RoHS)	CU NIPDAU	N/ A for Pkg Type	-40 to 85	TLC372IP	Samples
TLC372MD	ACTIVE	SOIC	D	8	75	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	372M	Samples
TLC372MDG4	ACTIVE	SOIC	D	8	75	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM		372M	Samples
TLC372MDR	ACTIVE	SOIC	D	8	2500	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	372M	Samples
TLC372MDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM		372M	Samples
TLC372MFKB	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	$\begin{aligned} & 5962- \\ & \text { 87658012A } \\ & \text { TLC372MFKB } \\ & \hline \end{aligned}$	Samples
TLC372MJG	ACTIVE	CDIP	JG	8	1	TBD	A42	N / A for Pkg Type	-55 to 125	TLC372MJG	Samples
TLC372MJGB	ACTIVE	CDIP	JG	8	1	TBD	A42	N/A for Pkg Type	-55 to 125	$\begin{aligned} & \text { 8765801PA } \\ & \text { TLC372M } \end{aligned}$	Samples
TLC372MP	ACTIVE	PDIP	P	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-55 to 125	TLC372MP	Samples
TLC372MUB	ACTIVE	CFP	U	10	1	TBD	A42	N / A for Pkg Type	-55 to 125	TLC372MUB	Samples
TLC372QD	ACTIVE	SOIC	D	8	75	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	372Q	Samples
TLC372QDG4	ACTIVE	SOIC	D	8	75	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	372Q	Samples
TLC372QDR	ACTIVE	SOIC	D	8	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	372Q	Samples
TLC372QDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	372Q	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
$\mathrm{Pb}-\mathrm{Free}$ (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS \& no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a " \sim " will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF TLC372, TLC372M :

- Catalog: TLC372
- Enhanced Product: TLC372-EP, TLC372-EP
- Military: TLC372M

NOTE: Qualified Version Definitions:

- Catalog - TI's standard catalog product
- Enhanced Product - Supports Defense, Aerospace and Medical Applications
- Military - QML certified for Military and Defense Applications

TAPE AND REEL INFORMATION

Device	Package Type	Package Drawing	Pins	SPQ	$\begin{array}{\|c\|} \hline \text { Reel } \\ \text { Diameter } \\ (\mathrm{mm}) \end{array}$	$\begin{array}{\|c\|} \hline \text { Reel } \\ \text { Width } \\ \text { W1 }(\mathrm{mm}) \end{array}$	$\begin{gathered} \mathrm{AO} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{BO} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{K} 0 \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{P} 1 \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{W} \\ (\mathrm{~mm}) \end{gathered}$	Pin1 Quadrant
5962-9554901NXDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLC372CDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLC372CPSR	SO	PS	8	2000	330.0	16.4	8.2	6.6	2.5	12.0	16.0	Q1
TLC372CPWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
TLC372IDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLC372MDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLC372MDRG4	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLC372QDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
5962-9554901NXDR	SOIC	D	8	2500	367.0	367.0	38.0
TLC372CDR	SOIC	D	8	2500	340.5	338.1	20.6
TLC372CPSR	SO	PS	8	2000	367.0	367.0	38.0
TLC372CPWR	TSSOP	PW	8	2000	367.0	367.0	35.0
TLC372IDR	SOIC	D	8	2500	340.5	338.1	20.6
TLC372MDR	SOIC	D	8	2500	367.0	367.0	38.0
TLC372MDRG4	SOIC	D	8	2500	367.0	367.0	38.0
TLC372QDR	SOIC	D	8	2500	367.0	367.0	38.0

JG (R-GDIP-T8)

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification.
E. Falls within MIL STD 1835 GDIP1-T8

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only.
E. Falls within MIL STD 1835 GDFP1-F10 and JEDEC MO-092AA

FK (S-CQCC-N**)
LEADLESS CERAMIC CHIP CARRIER 28 TERMINAL SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a metal lid.
D. Falls within JEDEC MS-004
$P(R-P D I P-T 8)$
PLASTIC DUAL-IN-LINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-001 variation BA.

DETAIL A
TYPICAL

NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
5. Reference JEDEC registration MO-153, variation AA.

NOTES: (continued)
6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOLDER PASTE EXAMPLE
BASED ON 0.125 mm THICK STENCIL
SCALE:10X

NOTES: (continued)
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.

D (R-PDSO-G8)

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.

Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shal not exceed $0.006(0,15)$ each side.
D. Body width does not include interlead flash. Interlead flash shall not exceed $0.017(0,43)$ each side
E. Reference JEDEC MS-012 variation AA.

D (R-PDSO-G8)

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

MECHANICAL DATA

PS (R-PDSO-G8)
PLASTIC SMALL-OUTLINE PACKAGE
(
NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 .

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in Tl's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.
TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, Tl's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products

Audio
Amplifiers
Data Converters
DLP® Products
DSP
Clocks and Timers
Interface
Logic
Power Mgmt
Microcontrollers
RFID
OMAP Applications Processors
Wireless Connectivity

Applications

Automotive and Transportation
Communications and Telecom
Computers and Peripherals
Consumer Electronics
Energy and Lighting
Industrial
Medical
Security
Space, Avionics and Defense
Video and Imaging

TI E2E Community

www.ti.com/automotive
www.ti.com/communications
www.ti.com/computers
www.ti.com/consumer-apps
www.ti.com/energy
www.ti.com/industrial
www.ti.com/medical
www.ti.com/security
www.ti.com/space-avionics-defense
www.ti.com/video
e2e.ti.com
www.ti.com/wirelessconnectivity

